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ABSTRACT

In compressible turbulence models it is assumed that the Favre-mean velocities are suit-

able approximations to the Reynolds-mean velocities in order to close unknown terms. This

neglects, in the mean momentum and energy equations, the contribution to the stress and

work terms by the mean of the fluctuating Favre velocity, a quantity proportional to the

turbulent mass flux. As the stress and work terms do not introduce any new unknown cor-

relations requiring closure in either k - - or Reynolds stress closures and because the exact

form of the terms can, with little additional work, be carried there is no need to make any

modeling assumptions. In the Reynolds stress equations the viscous terms appear naturally

in Reynolds variables while the problem is posed in Favre variables. In the process of split-

ting the viscous terms into the viscous transport terms, carried in Favre variables, and the

dissipation terms, carried in Reynolds variables, important contributions from the mass flux

appear. The accurate accounting of these terms is important for any consistent near wall

modeling and the retention of the mass flux terms is important in complex compressible

turbulent flows. L,,"; I ,,
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Introduction

The stress and work terms in the mean momentum, mean energy and the Reynolds

stress equations are usually modeled by assuming that the Favre mean velocity is a suitable

approximation to the Reynolds mean velocity. This neglects the contribution of the mean

of the fluctuating Favre velocity which, related to the turbulent mass flux, quantifies the

difference between the Reynolds and Favre mean velocities of the mean flow. As the stress

and work terms do not introduce any new unknown quantities in k - - or Reynolds stress

models (an eddy viscosity expression for the mass flux is typically carried) and because

they can be carried exactly with little additional complexity there is no need or justification

for any modeling assumptions. The present article derives the exact equations for the mean

flow and the Reynolds stresses for a compressible turbulence keeping the neglected difference

between the Reynolds and the Favre mean velocities. In so doing it is hoped to make two

crucial points clear: 1) that the retention of the mass flux terms in the several places it

appears in the mean momentum, mean energy and Reynolds stress equations is essential to

the prediction of any nominally complex engineering flows and 2) that a careful distinction

between Reynolds-averaged and Favre-averaged variables must be made to properly pose the

near-wall problem and insure that the near-wall asymptotics are carried out consistently.

In this exposition upper case letters will be used to denote mean quantities except in the

case of the mean density, < p >, as p has no convenient upper case form. The expectations

will be indicated using the angle brackets for time-means, eg. < vivj >, and the curly brackets

for the density-weighted or Favre-means, eg. {vivj}, where {vivj} =< p'viv, >< p >-' and

the asterisk denotes the full field, p* =< p > +p'. The dependent variables are decomposed

according to
u = Ui + ui where < ui >= 0

= Vi + Vi where {vi} = 0
p*= <p>+p' where <p'>=0
p*= P+p where <p>=0.

As both the Reynolds-mean and the Favre-mean velocities appear in the evolution equations

for a compressible turbulence it is necessary to carry both the Favre and the Reynolds

decompositions of the velocity field. The mean of the fluctuating Favre velocity, < vi >'

characterizes the difference between the Favre mean velocity and Reynolds mean velocities,

Vi and Ui, as well as the difference between the instantaneous fluctuating velocities:

U1= V,+ <v,>
Ui- Vri -- < V)i >•

The Favre fluctuation mean, a first-order moment, is related to the turbulent mass flux, a

second, urder moment, by

< PVi >=- < p >< Vi >



which follows from the definition of the Favre-average of the Favre fluctuation, {v,} =<

p*vi >< p >-'= 0. Thus, apart from a scaling by the local mean density, the mean of the

fluctuating Favre velocity and the mass flux are equivalent quantities. The primes on the

fluctuating density have been dropped.
Mathematically < v, > represents the difference between unweighted and density- weighted

averages of the velocity field and is therefore a measure of the effects of compressibility

ti, rough variations in density. It plays an important role in parameterizing the anisotropic

effects of compressibility associated with the mean dilatation and the mean density gradi-
ents. Experimentally it is an important and essential quantity that allows numerical results

computed in Favre averaged variables to be related to experimental results computed in

Reynolds variables. Additional results as well as an equation for the mass flux have been
given in Ristorcelli (1993). The present investigation focuses on the role the Favre fluctuation
mean plays in the the mean momentum, mean energy and the Reynolds stress equations and

shows that the current practice of neglecting it is unnecessary, inconsistent and inadequate.

The mean flow equations

Substituting in the Favre decomposition into the Navier-Stokes equations and time av-
eraging produces, without approximation,

(< p > Vi),t + (< p > VpVi),- = -Pi, "ij,j (U) - (< p > {vivP}),P

where E;•(U) =< it > [Uj,, +Uj,, - 2 / 3 Uq,q 6,j]. Correlations between the fluctuating viscos-

ity and the fluctuating velocity have been neglected. Note that the viscous terms are given
in terms of the time-averaged mean velocity while the problem is solved in terms of the

Favre-averaged mean velocity. They are related by U, = Vi + < vi >. The usual assump-
tion used to close the viscous term is that U, •_ Vi. Thus even the first-order equation is

modeled reducing the accuracy of the method at the very lowest order in the very region of
the most practical (aerodynamic) interest. Part of the appeal of k - - or Reynolds stress

turbulence models in the incompressible turbulence is that the equations for the mean flow

are carried exactly: this can also be done for the compressible turbulence. Substituting
U• = 'V, + < vi > produces the exact equation for the mean momentum equation:

(< p > V,) + (< p > V = -P,, + [ <,,+ < a,, >],, -(< p > It'y,}),'

where Ei, =< p > [Vi,, +V1,i -2/3Vq,q 6ij, and < oij >=< jI > [< 7% >.,j + < ,, >., -2/3 <'
Vq >q 6,q]. The mean momentum equation is now carried ex-actly. Note that the additional

terms, < ai, >, do not contribute to the mean flow equations if the turbulence is either

homogeneous or isotropic. In the near-wall region where the viscous terms are important
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and where there are gradients in the mean denrsity, the < vi > are important and need

to be carried. Data from Ma = 4.5 DNS computations of Dinavahi and Pruett (1993) in

unidirectional developing wall bounded flow indicate that the approximation of U, a- Vi in

the wall bounded flow is inadequate. This is a nominally simple flow, in comparison to

those of practical interest, in which there is a four-fold variation of the mean density over

the boundary layer. In data taken from that simulation, shown in Figure 1, it was quite

unexpectedly found that < v2 > is larger than either U2 and V2 . It is large enough to cause

U2 and V2 to have different signs. This indicates that the mean fluid particle transfer is

in a direction opposite to the net momentum transfer in flows with mean density gradients.

Moreover, the contribution of the Favre fluctuation mean to the total viscous stress was found

to be as large as one third the contribution of the Favre mean viscous stress, in the near

wall portions of the turbulent boundary layer. In flows with separation and re-attachment

the second derivative of the mean flow vanishes leaving, in the viscous terms, the second

derivative of the Favre fluctuation mean. Clearly this will be an important term when there

is a turbulent mass flux due to mean density gradients near the point of separation.

The mean energy equation is subject to similar deficiencies. The exact equation for the

mean total energy, internal plus kinetic, is

(< p > E),q + (< p > VpE),p= - [PVp + P < vp > + < pvp >],P+ [< opkVk > - < P > {CVp}l,

+ [EpkVk+ < pk > Vk + Epk < Vk >],p Qp,p.

It is not unusual in compressible turbulence models to see several, if not all, of the terms

involving the mass flux, P < Vk >, < apk > Vk, or Epk < Vk > dropped because the present

models for these terms destabilize computations or because they are, in the spirit of Ui ý- Vi,

assumed negligible.

The Reynolds stress equations

The second moment equations for a compressible flow, are written without approxima-

tion, and after some manipulation, as

D/Dt (< p > {vivj})= - < p > {fvipVj, - <p > {vjvp}V,,p + 1-ii +2/3 < pVk,k > bij

-[< pv, > bpi+ < pv-' > b,,,,+ < p > {,vv'v,}- < vJO' > - < ,,,,.j >),p
+ < v. > [-P, + Eik,k + < aik >,k]+ < Vi > [-P>j+ F2ik,k + < O'jk >,kI

--<uj,p01'n > -- < ui'P aup >

where the mean momentum equations have been used and o- =< U> [u,,, +uj,, -2/3uqq b].

The form of the equations above reflect the following manipulations: 1) The U'cviaoric part

of the pressure-strain correlation is defined [l,j =< p(vi,, +vj,i ) > -2/3 < pvk,k > 6,,. and

2) the identity vi = ui + < vi > has been used to rewrite the transport terms in vi variables

while keeping the dissipation terms in ui variables. In the Reynolds stress equations the
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terms arising from viscous surface terms appear naturally in u, variables while the problem

is posed in the Favre vi variables.

The dissipation type terms, which require closure, are kept in u, variables. The fact

that vi = ui + < vi > is used to segregate the terms into ones that require modeling

and ones that are carried as dependent variables in the closure scheme. The identities

< uti,pui >=< uiiP >,ip--2 < ui,i up >,p + < u1i,i p,p > and ui,p = up,,- 6ijpwj whp-re the
vorticity is wi = fijkuj,A, are used to write the trace of the dissipation terms as

< uJ,p o'>=< A > [< Wkwk > +2(< ujup >,jp -2 < Uk,k Up >,1 ) + 4/3 < Uk,k Up,p >].

Here < wjwj >=< uj,p uj,> - < Uj,p Up,j >=< Ujp Ujp> - < UqUp >,qp +2 < Uq,q Up >

T - < uqq up,,p >. In a homogeneous compressible turbulence < wj wj >=< uj,p u7 ,p > - <

uj,j urp' > which reduces to the usual expression in an incompressible homogeneous turbu-

lence. Defining the positive* definite scalar dissipation quantities, the solenoidal dissipation

< p > c, =< As >< wjwj > and the dilatational dissipation < p > Ed = 4/3 < pu ><

uPP Uq,q > the trace can then be written as

< ujI,cp >= < P > (S- + Ed) +Et

where Et = 2 < p > [< uiup >,j -2 < uk,k up >1,p is a scalar transport term that comes from

the dissipation type terms. The decrease of the Favre kinetic energy, for a homogeneous

turbulence is then written as D/Dt (< p > {vjvj}) = -2 < uj,pap >= -2 < p >

(s,+Ed)-2-t where et = 0 Note that Et is not defined as per unit mass quantity to emphasize

that an equation need not be carried for it: the substitution ui = vi - < vi > shows that

it can be written, except for the correlation with the divergence, in terms of the mass flux

and the Reynolds stresses for which equations are carried. In general et is either positive

or negative: in a homogeneous turbulence Ct is zero while in the near-wall region it makes

a nonnegligible contribution to the energy budget. The point is that in an inhomogeneous

turbulence it is necessary to recognize the contributions to < uj,p oap > that are functions of

gradients of the Reynolds stresses rather than hiding these terms in the dissipation. If the

trace is added and subtracted the dissipation-type terms can be rewritten as

- < uj,p o > - < ui,p o,, >=.- < p > -4- - 2/3 < p > (E, + Ed) 6bj - 2/3Etb,.

where the term < p > e4- has zero trace. The viscous terms are now manipulated into their

final form. Ubiiig a!' = aij - < aij >, which follows from ui = vi - < v, >, allows the

viscous transport terms to be rewritten as < vi"', >=< v, ai, > - < vi >< ajp >. The
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Reynolds stress equations can be written in the following form

D/Dt (< p > {vivj})= - < > {vjvp}Vj,p - < p > {vjvp}Vj,p+H-I, 3+2/3 < pd > 6ij
-<pvi > bpi+ < pvj > bip+ < p > f Vil~jVp1),p

+ 2[< ji >< vjv, >,, - < I >< vd > b5 p1/3- < y >< vd > ,pl/3],p
-2/3etbij - [< vj >< oip > + < vi >< Orjp >),p

+ < vj > [-P, + + < Oj, >,P]+ < v, > [-P,j + E%,,p+ <a,,, >,]
-e"p.> - 2/3 < p> (-, + ,d)45bj

where the definition of the stress tensor orij has been used to expand [< vjoip > + < vioTjp >]

in the viscous transport terms and d = vP,,. Except for neglecting correlations between the

fluctuating Favre velocity and its vorticity the final form of the Reynolds stress equations,

given above, is exact.

Conclusions

The mass fluxes or Favre fluctuation means appears in several places in the compressible

turbulence equations. They contribute to 1) the viscous terms in the mean momentum

equation, and in the mean energy equation they contribute to 2) the viscous terms, 3) the

pressure work terms, 4) the viscous work terms, and the 5) pressure flux which is coupled to

the mass flux through the equation of state. Modeling U, "" V, is equivalent to neglecting the

mass flux in five different locations in the mean equations. In the Reynolds stress equations

the mass flux contributes to 6) the viscous diffusion of the Reynolds stresses, which only

recognized when the viscous terms are properly distinguished into their Reynolds and Favre

variable components. The mass flux determine the importance of two production mechanisms

7) one due the acceleration of the mean flow and 8) the other due to viscous effects associated
with the Favre fluctuation mean and also it contributes to 9) the pressure flux. A general

algebraic model for the < vi >, derived from first principles, and suitable for complex flows

of engineering interest has been derived in Ristorcelli (1993) and tested in Ristorcelli and

Dinavahi (1993).

The viscous terms in the Favre-averaged Reynolds stress equations have been system-

atically derived, identified and segregated. The source of terms associated with anisotropy

and inhomogeneity of the dissipation, essential to consistent near-wall modeling, have been

shown. The second essential point is that the dissipation is a function of u, fluctuations

about the Reynolds mean, while the Reynolds stress equation is an evolution equation for

statistics of vi fluctuations around the Favre mean. The near-wall Taylor series expansions

of these two quantities, in a general compressible flow, are different. Near-wall asymptotics

must recognize these facts when relating Favre type variables {vivj}, in which the prob-

lem is posed, to dissipation type quantities which are carried in Reynolds variables. This

point is crucial for any consistent general near-wall model development in flows only nomi-
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nally more complex than the usual uni-direction adiabatic/isothermal flat plate flows: it is

necessary to start with the exact equations distinguishing between Favre and Reynolds de-

composed variables and recognizing that their respective Taylor series expansions are related

by vj = u,+ <vj>.

It is typical of current compressible k-e and Reynolds stress models to neglect some or all

of these contributions to the mean momentum, mean energy and Reynolds stress equations.

The retention of the mass flux terms will be important in complex compressible turbulent

flows: these include flows in which there are mean density gradients due to large Mach

number or combustion, separation or reattachment (inflection points), cold wall boundary

conditions, mean dilatation, shocks, adverse pressure gradients, or strong streamwise accel-

erations.
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